Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

نویسندگان

  • Mayank Aggarwal
  • Bhargav Kondeti
  • Chingkuang Tu
  • C. Mark Maupin
  • David N. Silverman
  • Robert McKenna
چکیده

Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3 (-), respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH(-)/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1--methylimidazole, 2--methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the 'in' and 'out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II.

In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5...

متن کامل

Structural and kinetic analysis of the chemical rescue of the proton transfer function of carbonic anhydrase II.

Histidine 64 in human carbonic anhydrase II (HCA II) functions in the catalytic pathway of CO(2) hydration as a shuttle to transfer protons between the zinc-bound water and bulk water. Catalysis of the exchange of (18)O between CO(2) and water, measured by mass spectrometry, is dependent on this proton transfer and was decreased more than 10-fold for H64A HCA II compared with wild-type HCA II. ...

متن کامل

Synthesis and Evaluation of Antimicrobial Activity of Metal Complexes of 4-(2'-Hydroxy Phenyl Imino) Phenyl Sulphonamide

       Keeping in view the promising potential of carbonic anhydrase inhibitor based antimicrobials and enhancement of carbonic anhydrase inhibitory activity by metal complexes of sulfonamides, with an aim to develop better antimicrobial agents we have attempted investigation of antimicrobial activity of metal complexes of 4-(2'-hydroxy phenyl imino) phenyl sulphonamide. Sulfanilamide was taken...

متن کامل

Chemical rescue in catalysis by human carbonic anhydrases II and III.

The maximal velocity of catalysis of CO(2) hydration by human carbonic anhydrase II (HCA II) requires proton transfer from zinc-bound water to solution assisted by His 64. The catalytic activity of a site-specific mutant of HCA II in which His 64 is replaced with Ala (H64A HCA II) can be rescued by exogenous proton donors/acceptors, usually derivatives of imidazole and pyridine. X-ray crystallo...

متن کامل

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014